Thermodynamic Properties of Simple Molecular Fluids: Tetrafluoromethane and Trifluoromethane

Ramón G. Rubio,*^{,†} John A. Zollweg,[‡] Jose M. G. Palanco,[†] Jorge C. G. Calado,[§] Jay Miller,[‡] and William B. Streett[‡]

Departamento QuÍmica Física, Facultad QuÍmicas, Universidad Complutense, 28040 Madrid, Spain, Complexo I, Istituto Superior Técnico, 1096 Lisboa, Portugal, and School of Chemical Engineering, Corneli University, Ithaca, New York 14853

The thermodynamic properties of CF_4 and CHF_3 have been calculated from an equation of state of the Strobridge type, fitted to extensive p-V-T data sets recently published. The thermodynamic properties under saturation conditions have been compared with previously published data, the agreement being satisfactory except in the near-critical region. The results have been used to discuss the performance of a monatomic fluid model, which is shown to be unsatisfactory.

Introduction

The halocarbon refrigerants are of obvious industrial importance, and also a class of substances of great theoretical interest. Current theories of liquid state highlight the importance of the shape of the molecule and of its polarity. The halomethane refrigerants are all based on a quasi-spherical nonpolar molecule----methane itself----and so can be regarded as a series of case studies showing the effect of increasing shape anisotropy and increasing polarity by the simple substitution of fluorine and/or chlorine for hydrogen atoms. As already pointed out (1-3), it is difficult to appreciate the overall effect of these substitutions without a correlation of the available experimental data, and such correlations, whether in the form of tables or equations, are essential to industrial designers and operators.

Two of the simplest halomethanes are CF₄ and CHF₃. While their grosser features may be modeled by quasi-spherical molecules, the large differences of the behavior of the CF4 + CHF3 mixture with respect to that of the ideal mixture are symptomatic of the anisotropies inherent in their microscopic interactions (4, 5). Rubio et al. (3, 6) have pointed out that a large number of papers in the literature arrive at contradictory conclusions concerning the intermolecular potential model for these two molecules. One can expect the anisotroples of the potential to be dependent on the packing of the molecules, i.e. the density (especially those arising from the shape of the molecules), and since this can be tuned by varying the temperature and the pressure, the availability of thermodynamic properties in wide ranges of p and T will be helpful in clarifying the main characteristics of the intermolecular potential of these simple molecular fluids, a necessary step in our ability to predict their thermodynamic properties.

Stewart et al. (7) summarized the available thermodynamic data for many halocarbons and showed that most of the results are concentrated in the low-density region. Recently, extensive experimental studies of the p-V-T surfaces of CF₄ (3) and CHF₃ (6) have been published. Although most of our measurements were obtained in the high-density region, there is a significant overlap with most of the previous low-density studies. Figures 1 and 2 show the p-T ranges for which density data are available.

In this paper we report calculated thermodynamic properties of CF₄ in the ranges 90 < T/K < 420 and 0 < p/bar < 1000and of CHF₃ in the ranges 126 < T/K < 332 and 0 < p/bar < 1000, derived from an equation of state of the Strobridge type fitted to the experimental p-V-T data.

Equation of State

For describing and interpolating the existing data we have used the Strobridge equation (8)

$$p = RT\rho + (A_1RT + A_2 + A_3/T + A_4/T^2 + A_5/T^4)\rho^2 + (A_8RT + A_7)\rho^3 + A_8T\rho^4 + (A_9/T^2 + A_{10}/T^3 + A_{11}/T^4)\rho^3 \exp(A_{16}\rho^2) + (A_{12}/T^2 + A_{13}/T^3 + A_{14}/T^4)\rho^5 \exp(A_{16}\rho^2) + A_{15}\rho^6 (1)$$

Detailed discussions of the data used to obtain the A_i parameters of eq 1 and of the differences between experimental and calculated results have been included in previous papers (3, 6). Table I gives the values of the A_i (i = 1-16) constants for both fluids, as well as their estimated uncertainties and the variances of the fits. Even though, for the high-density data, each isotherm can be fitted with mean square deviations (msd) of 0.01% in the density, the overall fit leads to an msd of 0.1% for both CF₄ and CHF₃. These results are similar to those found by Calado et al. (2) for ethylene. The increase of the msd is mainly due to the existence of some inconsistencies between the data obtained by different authors (3, 6).

Thermodynamic Properties of CF4

Information about the coexistence curve of the fluids is necessary to calculate the thermodynamic properties. Lobo and Staveley (9) have discussed in detail the orthobaric properties of CF₄, and we have used the vapor pressure curve proposed by them. The thermodynamic properties of the gas and saturated liquid were calculated by using standard thermodynamic formulas. Contrary to ref 2, we have used eq 1 for the gas phase instead of the virial equation of state. Table II shows the properties along the saturation curve for CF4. The saturated densities agree with those of Lobo and Staveley within 0.2% below 190 K, but the disagreement increases above that temperature, reaching about 2% at 220 K. It should be pointed out that the liquid densities reported by Lobo and Staveley are those of Terry et al. (19). The main source of discrepancy is the fact that the orthobaric vapor density $\rho_{\rm v}$ of Lobo and Staveley was calculated from the virial equation of state up to the third coefficient, while we have used eq 1; the difference in $\rho_{\rm v}$ at 200 K is 3%. Using our value for $\rho_{\rm v}$ and the law of rectilinear diameters obtained with the values reported in ref 9 for T < 180 K, we have found that the differences from our results decrease to less than 0.4%. McCormack and Schneider (11) have claimed that the fourth virial coefficient is necessary in order to explain their p-V-T data in the ranges T < 750 K and p < 50 bar. Kratzke et al. (12) have discussed

^{*} To whom correspondence should be addressed.

[†]Universidad Computense.

¹ Cornell University. ⁵ Instituto Superior Técnico.

	substance CF4		substance CHF ₃
i	A _i	i	A_i
1	$0.041 \pm 0.001 \text{ dm}^3 \text{ mol}^{-1}$	1	$0.045457 \pm 0.003 \text{ dm}^3 \text{ mol}^{-1}$
2	$1.76 \pm 0.04 \text{ bar dm}^6 \text{ mol}^{-2}$	2	$6.9009 \pm 0.07 \text{ bar } \text{dm}^6 \text{ mol}^{-2}$
3	-1947 ± 3 bar dm ⁶ K mol ⁻²	3	-5684.3 ± 2 bar dm ⁶ K mol ⁻²
4	$(1.347 \pm 0.002) \times 10^{5} \text{ bar dm}^{6} \text{ K}^{2} \text{ mol}^{-2}$	4	$(5.8935 \pm 0.01) \times 10^{5} \text{ bar dm}^{6} \text{ K}^{2} \text{ mol}^{-2}$
5	$(4.835 \pm 0.005) \times 10^8 \text{ bar dm}^6 \text{ K}^4 \text{ mol}^{-2}$	5	$-(2.6234 \pm 0.009) \times 10^9$ bar dm ⁶ K ⁴ mol ⁻²
6	$(0.53 \pm 0.02) \times 10^{-2} \mathrm{dm^6 \ mol^{-2}}$	6	$-(6.9026 \pm 0.5) \times 10^{-3} \mathrm{dm^6 \ mol^{-2}}$
7	-0.337 ± 0.004 bar dm ⁹ mol ⁻³	7	-0.21356 ± 0.007 bar dm ⁹ mol ⁻³
8	$(4.00 \pm 0.05) \times 10^{-6} \text{ bar dm}^{12} \text{ K}^{-1} \text{ mol}^{-4}$	8	$(2.2642 \pm 0.1) \times 10^{-5} \text{ bar dm}^{12} \text{ K}^{-1} \text{ mol}^{-4}$
9	$(5846 \pm 5) \times 10$ bar dm ⁹ K ² mol ⁻³	9	-33930 ± 80 bar dm ⁹ K ² mol ⁻³
10	$-(1.102 \pm 1) \times 10^7$ bar dm ⁹ K ³ mol ⁻³	10	$(2.9711 \pm 0.004) \times 10^7 \text{ bar dm}^9 \text{ K}^3 \text{ mol}^{-3}$
11	$(6.556 \pm 0.007) \times 10^8 \text{ bar dm}^9 \text{ K}^4 \text{ mol}^{-3}$	11	$-(3.4292 \pm 0.009) \times 10^9$ bar dm ⁹ K ⁴ mol ⁻³
12	-28.6 ± 0.4 bar dm ¹⁵ K ² mol ⁻⁵	12	$47.361 \pm 0.3 \text{ bar dm}^{15} \text{ K}^2 \text{ mol}^{-5}$
13	$7970 \pm 14 \text{ bar } \text{dm}^{15} \text{ K}^3 \text{ mol}^{-5}$	13	-64699 ± 2 bar dm ¹⁵ K ⁸ mol ⁻⁵
14	$-(1.2011 \pm 0.0004) \times 10^{6} \text{ bar } \text{dm}^{15} \text{ K}^{4} \text{ mol}^{-5}$	14	$(7.8646 \pm 0.008) \times 10^{6} \text{ bar } \text{dm}^{15} \text{ K}^{4} \text{ mol}^{-5}$
15	$(4.749 \pm 0.002) \times 10^{-5} \text{ bar dm}^{18} \text{ mol}^{-6}$	15	$(2.0224 \pm 0.007) \times 10^{-5} \text{ bar dm}^{18} \text{ mol}^{-6}$
16	$-0.0040 \pm 0.001 \mathrm{dm^6 mol^{-2}}$	16	$-0.0040 \pm 0.001 \text{ dm}^6 \text{ mol}^{-2}$
	estimated variance of fit $= 15$		estimated variance of fit = 23

Table I. Coefficients A_i (i = 1-16), Their Estimated Errors, and Their Estimated Variance of Fit for Equation 1 for CF₄ and CHF₃.

Tabie II.	Thermodynamic Pr	operties of Tetraflu	oromethane along th	le Saturation Curve		
T/K	P/bar	$\rho_{\rm l}/({\rm mol}~{\rm dm}^{-3})$	$\rho_v/(\text{mol dm}^{-3})$	$\Delta H_{\rm v}/({\rm kJ\ mol^{-1}})$	$-E_{\sigma}/(\text{kJ mol}^{-1})$	$-S_{\sigma}/(J \text{ mol}^{-1} \text{ K}^{-1})$
95	0.0032	21.067	4.0×10^{-4}	14.038	13.246	57.378
100	0.0076	20.817	9.2×10^{-4}	13.799	12.965	54.594
110	0.0338	20.288	3.69×10^{-3}	13.360	12.440	49.799
120	0.1122	19.732	1.128×10^{-2}	12.957	11.952	45.778
130	0.3020	19.163	2.817×10^{-2}	12.566	11.483	42.270
140	0.6925	18.571	6.060×10^{-2}	12.162	11.017	39.079
150	1.4027	17.955	0.1165	11.721	10.541	36.074
160	2.5775	17.309	0.2058	11.221	10.046	33.182
170	4.3827	16.623	0.3410	10.642	9.527	30.365
180	7.0010	15.881	0.5389	9.968	8.979	27.604
190	10.6300	15.063	0.8236	9.169	8.396	24.880
200	15.4857	14.129	1.2340	8.205	7.768	22.161
210	21.8122	12.998	1.8414	7.003	7.067	19.378
215	25.6170	12.301	2.2618	6.268	6.670	17. 9 22
220	29.9096	11.431	2.8056	5.391	6.219	16.378
225	34.7538	10.087	3.5426	4.246	5.636	14.627
	0.111000	100001	0.0120		0.000	

Figure 1. p-T ranges for which p-V-T data are available for CF₄: (--) Rubio et al. (2); (---) Douslin et al. (30); (--) Lange and Stein (31); (...) Martin and Bhada (32); (--) McCormack and Schnelder (11).

in detail the errors arising in the thermodynamic properties from an insufficient knowledge of the virial coefficients. Figure 3 shows the data from different sources.

Figure 2. p-T ranges for which p-V-T data are available for CHF₃: (--) Rubio et al. (6); (--) Hou and Martin (17); (---) Belzile et al. (33) and Hori et al. (16).

As a further test of the equation of state, we have calculated the second virial coefficients from extrapolation of B = (Z - Z)1)/ ρ to $\rho \rightarrow 0$, where Z is the compressibility factor. Figure 4 shows the results, together with the values recommended by

Figure 3. Orthobaric densities for CF₄ according to different sources: (-) Lobo and Staveley (9); (III) Rubio et al. (3); (X) CP, critical point.

Figure 4. Second virial coefficients obtained from the proposed equation of state for CHF_3 (X) and those recommended by Dymond and Smith (20) (O). For CF_4 , + are the values from eq 1 and \blacksquare are the values from Dymond and Smith.

Dymond and Smith (20). The agreement is very good. We have calculated the heat of vaporization from

$$\Delta H_{\nu} = \tau \left(\frac{\partial \rho}{\partial \tau}\right)_{\sigma} \left(\frac{1}{\rho_{\nu}} - \frac{1}{\rho_{l}}\right)$$
(2)

where the subscript σ refers to orthobaric conditions. The disagreement with the values of Lobo and Staveley is less than 2% except at 220 K, where it is of the order of 6%. On the other hand, the difference from the value reported by Smith and Pace (13) at the normal boiling point is 1.5%. Since we have used the same vapor pressure as Lobo and Staveley (9), the differences in ΔH_v clearly arise from the calculated orthobaric densities.

Table III shows the mechanical coefficients of liquid CF₄ under saturation conditions. Besides eq 1 and the vapor pressure equation of Lobo and Staveley, the speed of sound data of Baglol et al. (14) and the heat capacity results of Smith and Pace (13) have been used. For the thermodynamic relations involved in the calculations, we refer the reader to the paper of Lobo and Staveley (9). Once again, the small differences between the results of Table III and those of ref 9 show the results of the thermodynamic properties of CF₄ at round values of p and T. Tables IV-IX show the thermodynamic properties at selected values of p and T.

Table III. Mechanical Coefficients of Liquid Tetrafluoromethane under Saturation Conditions

	<i>T</i> /K	$\beta \times 10^4/\text{bar}^{-1}$	$\frac{\alpha \times 10^3/K^{-1}}{10^3/K^{-1}}$	$\gamma/$ (bar K ⁻¹)	$\gamma_{\sigma}/$ (bar K ⁻¹)	$\alpha_{\sigma} \times 10^3/\mathrm{K}^{-1}$	
-	95	0.85	2.32	27.13	0.00	2.32	-
	100	0.92	2.46	26.82	0.00	2.46	
	110	1.09	2.67	24.62	0.00	2.67	
	120	1.31	2.85	21.76	0.01	2.85	
	130	1.61	3.04	18.92	0.03	3.04	
	140	2.00	3.26	16.31	0.05	3.25	
	150	2.52	3.53	13.98	0.09	3.51	
	160	3.26	3.89	11.92	0.15	3.84	
	170	4.34	4.37	10.08	0.22	4.28	
	180	6.00	5.07	8.44	0.31	4.88	
	190	8.82	6.13	6.95	0.42	5.76	
	200	14.27	7.96	5.58	0.55	7.17	
	210	27.56	11.82	4.29	0.72	9.85	
	215	43.75	15.96	3.65	0.81	12.43	
	220	85.00	25.38	2.99	0.91	17.63	

Figure 5. Orthobaric densities for CHF_3 according to different sources: (---) equation of Hori et al. (16); (X) near-critical data of ref 16; (\oplus) data of Rubio et al. (6); (**III**) data of Kondo et al. (19).

Thermodynamic Properties of CHF₃

For CHF₃ the vapor pressures reported by Valentine et al. (15), Hori et al. (16), and Hou and Martin (17) were fitted to an equation like that proposed by Goodwin (18). Table X shows the thermodynamic properties of CHF₃ under saturation conditions at selected values of T, and Table XI shows the mechanical coefficients at the same conditions. Figure 5 shows the saturation density for the liquid, as well as the values reported by Kondo et al. (19) and the near-critical data of Hori et al. (16). It can be observed that the agreement with the most recent equation of state of Hori et al. (16) is excellent, with discrepancies starting to appear near the lower limit of applicability of Hori's equation (203 K). Our results extrapolate very smoothly to the near-critical experimental data (16). The heat of vaporization at 190.97 K measured by Valentine et al. (15) is 1% lower than that reported in Table II; no other ΔH_{ν} data have been found.

Figure 4 shows the second virial coefficients of CHF_3 calculated as described above for CF_4 . As it can be observed, the results follow the general trend of the very scattered available data (20). Tables XII-XVII show the thermodynamic properties at selected values of p and T.

Monatomic Fluid Model

As already mentioned, there exists a strong controversy about the intermolecular potential model suitable for simple molecular fluids such as the ones discussed in this paper. While

			,													
	1								density							
Т	P = 5	P = 10	P = 15	P = 25	P = 50	P = 100	P = 200	P = 300	P = 400	P = 500	P = 600	P = 700	P = 800	P = 900	P = 1000	P = 1100
95	21.076	21.085	21.094	21.111	21.155	21.238	21.395									
100	20.826	20.836	20.845	20.864	20.910	20.998	21.164	21.318	21.460							
110	20.299	20.310	20.321	20.343	20.395	20.497	20.686	20.859	21.019	21.169	21.310	21.442	21.569	21.689	21.803	21.913
120	19.748	10.761	19.774	19.779	19.860	19.978	20.195	20.392	20.573	20.741	20.897	21.045	21.184	21.316	21.441	21.562
130	19.178	19.193	19.208	19.238	19.311	19.448	19.699	19.923	20.127	20.315	20.489	20.651	20.804	20.948	21.085	21.216
140	18.587	18.606	18.624	18.659	18.746	18.908	19.199	19.454	19.684	19.893	20.085	20.264	20.431	20.588	20.736	20.877
150	17.972	17.994	18.016	18.059	18.164	18.356	18.694	18.985	19.243	19.475	19.687	19.883	20.064	20.234	20.394	20.546
160	17.323	17.350	17.378	17.431	17.559	17.790	18.184	18.516	18.805	19.062	19.295	19.508	19.705	19.888	20.060	20.222
170	16.627	16.663	16.697	16.765	16.923	17.204	17.667	18.046	18.369	18.654	18.908	19.139	19.352	19.549	19.732	19.905
180		15.910	15.956	16.044	16.247	16.594	17.142	17.574	17.935	18.249	18.526	18.777	19.005	19.216	19.411	19.594
190			15.120	15.243	15.514	15.953	16.605	17.099	17.503	17.847	18.149	18.419	18.664	18.888	19.096	19.290
200				14.308	14.696	15.270	16.056	16.621	17.071	17.449	17.776	18.067	18.328	18.567	18.787	18.991
210				13.107	13.744	14.533	15.493	16.140	16.641	17.054	17.408	17.719	17.998	18.251	18.483	18.698
220					12.542	13.725	14.913	15.655	16.211	16.662	17.044	17.377	17.673	17.941	18.185	18.411
240	0.261	0.545	0.858	1.605	5.719	11.787	13.702	14.676	15.356	15.888	16.328	16.706	17.038	17.335	17.604	17.858
250	0.249	0.517	0.808	1.478	4.184	10.605	13.073	14.183	14.932	15.507	15.978	16.378	16.728	17.040	17.322	17.579
260	0.238	0.492	0.764	1.375	3.530	9.319	12.432	13.691	14.512	15.131	15.632	16.056	16.424	16.750	17.044	17.312
270	0.229	0.470	0.726	1.290	3.123	8.091	11.788	13.201	14.096	14.760	15.292	15.739	16.125	16.466	16.772	17.050
280	0.220	0.450	0.692	1.217	2.833	7.072	11.149	12.717	13.686	14.395	14.958	15.427	15.831	16.186	16.504	16.793
290	0.212	0.432	0.662	1.154	2.610	6.279	10.527	12.242	13.283	14.036	14.630	15.121	15.543	15.912	16.242	16.540
300	0.204	0.415	0.635	1.099	2.432	5.665	9.932	11.778	12.889	13.685	14.308	14.822	15.260	15.644	15.985	16.293
310	0.197	0.400	0.610	1.050	2.284	5.181	9.373	11.329	12.505	13.342	13.994	14.529	14.984	15.381	15.733	16.051
320	0.190	0.386	0.587	1.006	2.158	4.791	8.855	10.897	12.132	13.008	13.687	14.242	14.713	15.123	15.486	15.813
330	0.184	0.373	0.566	0.966	2.050	4.469	8.381	10.484	11.771	12.682	13.387	13.962	14.449	14.871	15.245	15.581
340	0.179	0.361	0.547	0.930	1.955	4.199	7.949	10.091	11.423	12.367	13.096	13.689	14.191	14.625	15.009	15.353
350	0.173	0.350	0.529	0.897	1.871	3.968	7.557	9.720	11.088	12.062	12.813	13.424	13.939	14.585	14.778	15.131
360	0.168	0.339	0.513	0.867	1.796	3.768	7.203	9.369	10.767	11.767	12.538	13.165	13.694	14.150	14.553	14.913
370	0.164	0.329	0.497	0.839	1.728	3.592	6.881	9.040	10.460	11.482	12.272	12.914	13.455	13.922	14.333	14.701
380	0.159	0.320	0.483	0.813	1.666	3.437	6.589	8.731	10.167	11.208	12.015	12.670	13.222	13.699	14.118	14.493
6 8	0.155	0.311	0.469	0.789	1.610	3.298	6.324	8.441	9.888	10.945	11.765	12.434	12.996	13.482	13.909	14.290
400	0.151	0.303	0.456	0.766	1.558	3.173	6.082	8.170	9.622	10.691	11.525	12.204	12.776	13.270	13.704	14.092
410	0.147	0.295	0.444	0.745	1.510	3.060	5.860	7.916	9.369	10.448	11.293	11.982	12.563	13.064	13.505	13.899
420	0.144	0.288	0.433	0.725	1.465	2.956	5.657	7.677	9.129	10.215	11.069	11.767	12.356	12.864	13.312	13.711

Table IV. Density (mol dm⁻³) of Tetrafluoromethane at Round Values of Pressure (P, bar) and Temperature (T, K)

Table V. Isothermal Compressibility $(10^{-4}/bar)$ for Tetrafluoromethane at Various Pressures (P, bar) and Temperatures (T, K)

						i	sothermal	compressi	bility					
Τ	P=5	<i>P</i> = 10	P = 15	P = 25	P = 50	P = 100	P = 200	P = 300	P = 400	P = 500	P = 600	P = 700	P = 800	P = 900
95	0.85	0.84	0.84	0.83	0.81	0.77	0.70							
100	0.91	0.91	0.90	0.89	0.87	0.82	0.75	0.69	0.64					
110	1.08	1.07	• 1.07	1.05	1.02	0.97	0.87	0.80	0.74	0.68	0.64	0.60	0.57	0.54
120	1.30	1.29	1.28	1.26	1.22	1.15	1.02	0.92	0.85	0.78	0.73	0.68	0.64	0.60
130	1.59	1.58	1.57	1.54	1.48	1.37	1.20	1.07	0.97	0.89	0.82	0.76	0.71	0.67
140	1.98	1.96	1.94	1.90	1.81	1.65	1.41	1.24	1.11	1.01	0.92	0.85	0.79	0.74
150	2.50	2.47	2.43	2.37	2.23	2.00	1.67	1.44	1.27	1.14	1.03	0.95	0.88	0.81
160	3.23	3.18	3.12	3.02	2.80	2.45	1.97	1.66	1.44	1.28	1.15	1.05	0.96	0.89
170	4.32	4.22	4.13	3.96	3.58	3.03	2.34	1.93	1.64	1.44	1.28	1.16	1.06	0.97
180		5.89	5.71	5.38	4.71	3.81	2.80	2.23	1.87	1.61	1.42	1.27	1.15	1.05
190			8.46	7.75	6.44	4.88	3.35	2.58	2.12	1.80	1.57	1.39	1.25	1.14
200				12.39	9.33	6.39	4.04	2.99	2.40	2.00	1.73	1.52	1.36	1.23
210				24.99	14.91	8.65	4.89	3.47	2.71	2.23	1.90	1.66	1.47	1.33
220					28.90	12.18	5.96	4.02	3.05	2.47	2.08	1.80	1.59	1.42
240	2083.40	1091.83	768.82	531.86	625.38	28.35	8.97	5.38	3.86	3.02	2.48	2.11	1.84	1.63
250	2071.97	1077.91	751.50	502.70	383.64	46.19	11.01	6.20	4.32	3.32	2.70	2.28	1.97	1.73
260	2062.27	1066.46	737.82	482.28	317.24	71.63	13.47	7.12	4.82	3.64	2.93	2.45	2.10	1.84
270	2053.98	1056.94	726.80	467.19	284.27	94.78	16.30	8.14	5.36	3.98	3.16	2.62	2.24	1.96
280	2046.86	1048.94	717.78	455.62	264.16	107.55	19.41	9.25	5.92	4.33	3.41	2.81	2.38	2.07
290	2040.72	1042.18	710.31	446.50	250.54	112.33	22.65	10.38	6.52	4.70	3.66	2.99	2.53	2.19
300	2035.41	1036.41	704.05	439.15	240.67	113.19	25.81	11.56	7.13	5.08	3.92	3.18	2.68	2.30
310	2030.79	1031.46	698.76	433.13	233.21	112.39	28.74	12.76	7.75	5.46	4.18	3.38	2.82	2.42
320	2026.76	1027.20	694.25	428.13	227.38	110.97	31.34	13.94	8.37	5.85	4.45	3.57	2.97	2.54
330	2023.23	1023.50	690.38	423.93	222.71	109.38	33.56	15.08	8.99	6.23	4.71	3.77	5.12	2.66
340	2020.15	1020.28	687.04	420.37	218.90	107.83	35.42	16.15	9.60	6.62	4.98	5.96	5.27	2.78
350	2017.40	1017.46	684.13	417.32	215.74	106.40	36.94	17.16	10.19	7.00	5.24	4.15	3.42	2.90
360	2014.99	1014.99	681.61	414.70	213.09	105.09	38.19	18.09	10.76	7.37	5.50	4.35	3.57	3.02
370	2012.86	1012.81	679.39	412.43	210.84	103.93	39.19	18.95	11.31	7.73	5.75	4.53	3.72	3.14
380	2010.96	1010.89	677.44	410.45	208.92	102.89	40.00	19.72	11.82	8.08	6.00	4.72	3.86	3.25
390	2009.28	1009.18	675.73	408.72	207.27	101.97	40.65	20.42	12.31	8.41	6.24	4.90	4.00	3.37
400	2007.78	1007.67	674.21	407.20	205.84	101.15	41.18	21.05	12.76	8.73	6.48	5.08	4.14	3.48
410	2006.44	1006.33	672.86	405.86	204.59	100.43	41.60	21.61	13.19	9.04	6.70	5.25	4.28	3.59
420	2005.24	1005.13	671.67	404.67	203.49	99.79	41.95	22.11	13.59	9.33	6.92	5.42	4.41	3.69

site-site potentials seem to be necessary for dealing with noticeable anisotroples of shape (21, 22), surprisingly good results were reported by Huang and O'Connell (23) from a correlation based on the assumption of a spherical reference system common to all the fluids, which implies the same intermolecular potential to be valid for all of them. Recently, it has been shown that although bulk modulus data of several molecular fluids seem to support this conclusion (24), other properties, such as the residual heat capacity at constant volume, indicate that some characteristics of the intermolecular potential (e.g. the slope of the repulsive branch) differ from fluid to fluid. This conclusion is in agreement with results obtained from application of the Gubbins-Gray perturbation theory (2, 3). In this paper we pursue a little further the study carried out in ref 24, since new information can be obtained from the residual properties reported in this paper.

As previously (24), the starting point is the assumption of an effective intermolecular potential of the form

$$U_{\rm eff}(r, T, V) = \frac{A(T, V)}{r^n} - \frac{B(T, V)}{r^m}$$
(3)

Values of n and m for different molecular fluids have been reported by Compostizo et al. (24).

Using eq 3 and the virial theorem, Grindley and Lind have concluded that

$$(m - n)(\partial \langle U_{a} \rangle / \partial V) = (3 + n)p + 3V(\partial p / \partial V) - nT(\partial p / \partial T)$$
(4)

where

$$\langle U_{a} \rangle = -\frac{N^{2}}{2V} \int \frac{B(T,V)}{r^{m}} g(r,T,V) \, \mathrm{d}\vec{r}$$
 (5)

N/V being the number density. As is obvious from eq 5, $\langle U_a \rangle$

Figure 6. Density derivative of the mean attractive energy vs reduced temperature ($T_r = kT/\epsilon$) for CF₄ and CCI₄: (--) CF₄ at the saturation curve; (---) CF₄ isochores; (---) CCI₄ at the saturation curve.

gives a measure of the contribution of the attractive forces to the total energy of the fluid. Figure 6 shows $(\partial \langle U_a \rangle / \partial V)_T$ calculated from eq 4 for CF₄ and for CCl₄ along the saturation curve. We have used n = 19 for CF₄, n = 22 for CCl₄ (24) and m = 6 in both cases. As shown by Grindley and Lind (25), eq 4 implies that $(\partial \langle U_a \rangle / \partial V)_T$ should be temperature-independent along an isochore, whereas Figure 6 shows a clear temperature dependence, which indicates that eq 3 is not good enough for simple molecular fluids like CF₄. Similar conclusions hold when the results of CHF₃ are analyzed.

ble V	L. The	rmal Ex	pansion (Coefficie	nt (10 ⁻³ K	(-1) for Tet	trafluorom	lethane af	t Various l	Pressures	(P, bar) &	and Temp	eratures (T, K)		
								thermal ex	spansion co	efficient						
T	P = 5	P = 10	P = 15	P = 25	P = 50	P = 100	P = 200	P = 300	P = 400	P = 500	P = 600	P = 700	P = 800	P = 900	P = 1000	P = 1100
95	2.31	2.30	2.30	2.29	2.26	2.21	2.12									
<u>8</u>	2.45	2.45	2.44	2.43	2.39	2.33	2.22	2.12	2.03							
110	2.66	2.65	2.64	2.63	2.58	2.50	2.35	2.23	2.12	2.02	1.94	1.86	1.79	1.73	1.67	1.61
120	2.84	2.83	2.82	2.79	2.73	2.63	2.45	2.30	2.17	2.06	1.97	1.88	1.81	1.74	1.68	1.62
130	3.02	3.01	2.99	2.96	2.88	2.75	2.53	2.35	2.21	2.09	1.98	1.89	1.81	1.74	1.67	1.61
140	3.24	3.22	3.20	3.15	3.06	2.89	2.62	2.41	2.25	2.11	2.00	1.90	1.81	1.73	1.67	1.60
150	3.51	3.48	3.45	3.39	3.26	3.04	2.71	2.47	2.28	2.13	2.01	1.90	1.81	1.73	1.66	1.59
160	3.87	3.82	3.78	3.70	3.52	3.23	2.82	2.54	2.32	2.15	2.02	1.90	1.81	1.72	1.65	1.58
170	4.36	4.30	4.23	4.12	3.86	3.47	2.95	2.61	2.37	2.18	2.03	1.91	1.81	1.72	1.64	1.58
180		5.00	4.90	4.71	4.32	3.76	3.10	2.69	2.42	2.21	2.05	1.92	1.81	1.72	1.64	1.57
190			5.96	5.62	4.96	4.14	3.27	2.78	2.47	2.24	2.07	1.93	1.81	1.72	1.63	1.56
200				7.22	5.94	4.63	3.46	2.88	2.52	2.27	2.08	1.94	1.82	1.72	1.63	1.56
210				11.00	7.62	5.29	3.69	2.99	2.58	2.31	2.10	1.95	1.82	1.72	1.63	1.55
220					11.22	6.21	3.95	3.11	2.65	2.34	2.12	1.96	1.82	1.72	1.63	1.55
240	4.73	5.42	6.29	8.92	51.57	9.38	4.54	3.35	2.77	2.41	2.16	1.98	1.83	1.72	1.62	1.54
250	4.48	5.06	5.75	7.67	21.02	11.80	4.86	3.47	2.83	2.44	2.18	1.99	1.84	1.72	1.62	1.53
260	4.26	4.75	5.31	6.77	14.01	13.85	5.18	3.59	2.88	2.47	2.19	1.99	1.84	1.71	1.61	1.53
270	4.06	4.47	4.94	6.08	10.79	14.06	5.46	3.69	2.93	2.49	2.21	2.00	1.84	1.71	1.61	1.52
280	3.88	4.23	4.62	5.54	8.86	12.73	5.67	3.78	2.97	2.51	2.22	2.00	1.84	1.71	1.60	1.52
290	3.72	4.02	4.35	5.09	7.57	11.06	5.80	3.84	3.00	2.53	2.22	2.00	1.84	1.71	1.60	1.51
30	3.57	3.83	4.11	4.72	6.64	9.56	5.82	3.88	3.02	2.54	2.22	2.00	1.83	1.70	1.59	1.50
310	3.43	3.66	3.89	4.41	5.94	8.34	5.75	3.89	3.03	2.54	2.22	2.00	1.83	1.69	1.58	1.49
320	3.31	3.50	3.71	4.14	5.38	7.36	5.60	3.88	3.03	2.54	2.22	1.99	1.82	1.68	1.58	1.49
330	3.19	3.36	3.54	3.91	4.93	6.57	5.40	3.84	3.01	2.53	2.21	1.98	1.81	1.67	1.57	1.43
340	3.08	3.23	3.38	3.70	4.56	5.93	5.17	3.79	2.99	2.51	2.19	1.97	1.80	1.66	1.55	1.47
350	2.98	3.11	3.25	3.52	4.25	5.40	4.93	3.71	2.96	2.49	2.18	1.95	1.78	1.65	1.54	1.45
360	2.89	3.00	3.12	3.36	3.98	4.96	4.69	3.63	2.91	2.46	2.16	1.94	1.77	1.64	1.53	1.44
370	2.80	2.90	3.01	3.22	3.75	4.59	4.45	3.53	2.87	2.43	2.13	1.92	1.75	1.62	1.52	1.43
380	2.72	2.81	2.90	3.08	3.54	4.27	4.22	3.43	2.81	2.40	2.11	1.90	1.73	1.61	1.50	1.42
390	2.64	2.72	2.80	2.97	3.36	3.99	4.00	3.32	2.76	2.36	2.08	1.87	1.72	1.59	1.49	1.40
<u>4</u> 00	2.57	2.64	2.71	2.86	3.20	3.75	3.80	3.21	2.69	2.32	2.05	1.85	1.70	1.57	1.47	1.39
410	2.50	2.57	2.63	2.76	3.06	3.54	3.62	3.11	2.63	2.28	2.02	1.83	1.67	1.55	1.45	1.37
420	2.44	2.40	2.55	2.66	2.93	3.35	3.44	3.00	2.57	2.23	1.99	1.80	1.65	1.53	1.44	1.36

	P =	1100			1.61	1.62	1.61	1.60	1.59	1.58	1.58	1.57	1.56	1.56	1.55	1.55	1.54	1.53	1.53	1.52	1.52	1.51	1.50	1.49	1.49	1.48	1.47	1.45	1.44	1.43	1.42	4.48	1.57	1.36
	D =	1000			1.67	1.68	1.67	1.67	1.66	1.65	1.64	1.64	1.63	1.63	1.63	1.63	1.62	1.62	1.61	1.61	1.60	1.60	1.59	1.58	1.58	1.57	1.55	1.54	1.53	1.52	1.50	1.49	1.45	1.44
	P =	1100			32.85	29.72	26.88	24.39	22.24	20.38	18.76	17.35	16.10	15.00	14.01	13.12	11.59	10.93	10.32	9.76	9.25	8.78	8.34	7.93	7.50	7.21	6.85	6.57	6.29	6.02	5.77	5.53	5.11	4.91
	P =	1000			32.41	29.27	26.41	23.91	21.75	19.88	18.25	16.83	15.52	14.48	13.49	12.60	11.08	10.42	9.82	9.27	8.77	8.30	7.87	7.47	7.10	6.76	6.44	6.14	5.83	5.61	5.36	5.14	4.75	4.54
	P =	006			31.93	28.78	25.91	23.40	21.22	19.54	17.71	16.29	15.03	13.93	12.94	12.06	10.55	9.89	9.30	8.75	8.25	7.80	7.37	9.98	6.62	6.29	5.98	5.69	5.42	5.17	4.94	4.72	4.33	4.15
	= d	800			31.41	28.26	25.38	22.85	20.67	18.78	17.14	15.71	14.46	13.35	12.36	11.48	9.98	9.33	8.74	8.20	7.71	7.26	6.85	6.46	6.11	5.79	5.49	5.21	4.95	4.71	4.49	4.29	3.91	2.75
	<u> </u>	200			30.84	27.70	24.81	22.27	20.07	18.18	16.53	15.10	13.84	12.73	11.74	10.87	9.37	8.72	8.14	7.61	7.13	6.69	6.28	5.91	5.57	5.26	4.97	4.70	4.45	4.23	4.02	3.82	3.48	3.32
ient	Р =	600			30.21	27.08	24.19	21.65	19.44	17.53	15.88	14.44	13.18	12.06	11.08	10.20	8.71	8.07	7.49	6.97	6.50	6.06	5.67	5.31	4.98	4.68	4.41	4.45	3.92	3.71	3.51	3.33	3.01	2.87
re coeffic	<u> </u>	500			29.52	26.41	23.52	20.97	18.75	16.84	15.17	13.73	12.46	11.34	10.35	9.47	7.98	7.35	6.78	6.27	5.80	5.38	5.00	4.65	4.34	4.05	3.79	3.56	3.34	3.15	2.97	2.81	2.52	2.39
al pressu	р =	400		31.53	28.75	25.68	22.79	20.24	18.01	16.08	14.40	12.94	11.67	10.54	9.55	8.66	7.17	6.54	5.98	5.47	5.02	4.61	4.24	3.91	3.62	3.35	3.11	2.90	2.71	2.54	2.38	2.24	2.00	1.89
thern	<u> </u>	300		30.56	27.90	24.86	21.99	19.43	17.18	15.24	13.55	12.07	10.78	9.64	8.63	7.74	6.23	5.60	5.04	4.54	4.09	3.70	3.36	3.05	2.78	2.55	2.34	2.16	2.00	1.86	1.74	1.63	1.44	1.36
	н Н	200	30.11	29.48	26.94	23.96	21.09	18.52	16.26	14.29	12.58	11.07	9.75	8.58	7.54	6.62	5.06	4.42	3.85	3.35	2.92	2.56	2.25	2.00	1.79	1.61	1.46	1.33	1.23	1.13	1.05	0.99	0.87	0.82
	Р =	100	28.73	28.24	25.86	22.93	20.08	17.50	15.21	13.20	11.44	9.88	8.49	7.24	6.12	5.10	3.31	2.55	1.93	1.48	1.18	0.98	0.84	0.74	0.66	0.60	0.55	0.51	0.47	0.44	0.41	0.39	0.35	0.34
	P =	20	27.96	27.56	25.27	22.37	19.52	16.93	14.62	12.58	10.77	9.16	7.70	6.37	5.11	3.88	0.82	0.55	0.44	0.38	0.34	0.30	0.28	0.25	0.24	0.22	0.21	0.20	0.19	0.18	0.17	0.16	0.16	0.14
	= d	25	27.55	27.20	24.95	22.07	19.23	16.62	14.30	12.24	10.41	8.76	7.24	5.82	4.40		0.17	0.15	0.14	0.13	0.12	0.11	0.11	0.10	0.10	0.09	0.09	0.08	0.08	0.08	0.08	0.07	0.07	0.07
	= d	15	27.38	27.05	24.82	21.95	19.10	16.50	14.17	12.10	10.25	5.58	7.04				0.08	0.08	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04
	P =	10	27.30	26.97	24.76	21.89	19.04	16.43	14.10	12.03	10.17	8.49					0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	P =	່ ວ	27.21	26.90	24.69	21.82	18.98	16.37	14.03	11.95	10.09						0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
		Т	95	100	110	120	130	140	150	160	170	180	190	200	210	220	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380 380	390	1 00	420

res (T. K) the first Table VII. Thermal Pressure Coefficient (bar/K) for Tetrafluoromethane at Various Pressures (P. bar) and Tem

								onfiguratio	onel intern	al anormi						
Т	P = 5	P = 10	P = 15	P = 25	P = 50	P = 100	P = 200	P = 300	P = 400	P = 500	P = 600	P = 700	P = 800	P = 900	P = 1000	P = 1100
95	13 251	13 256	13.261	13 979	13 997	13 346	13.437									
8 <u>8</u>	12.971	12.977	12.983	12.994	13.023	13.077	13.180	13.273	13.359							
110	12.447	12.454	12.461	12.475	12.510	12.576	12.699	12.810	12.911	13.004	13.089	13.168	13.241	13.309	13.372	13.430
120	11.960	11.968	11.977	11.994	12.035	12.114	12.257	12.385	12.501	12.606	12.702	12.790	12.872	12.947	13.017	13.081
130	11.492	11.503	11.513	11.533	11.581	11.673	11.838	11.984	12.114	12.232	12.338	12.436	12.525	12.608	12.684	12.754
140	11.027	11.040	11.052	11.075	11.132	11.239	11.429	11.594	11.739	11.869	11.986	12.093	12.190	12.279	12.361	12.457
150	10.551	10.566	12.580	10.608	10.676	10.801	11.019	11.204	11.366	11.509	11.637	11.752	11.857	11.953	12.042	12.123
160	10.054	10.072	10.090	10.124	10.205	10.352	10.602	10.810	10.989	11.146	11.285	11.410	11.523	11.626	11.720	11.806
170	9.529	9.551	9.573	9.615	9.713	9.888	10.176	10.410	10.608	10.779	10.930	11.065	11.186	11.296	11.396	11.488
180		8.995	9.023	9.076	9.199	9.410	9.744	10.007	10.225	10.412	10.575	10.719	10.849	10.966	11.072	11.170
190			8.429	8.500	8.659	8.918	9.308	9.604	9.844	10.047	10.223	10.378	10.516	10.640	10.753	10.856
200				7.867	8.085	8.414	8.873	9.206	9.470	9.691	9.880	10.045	10.192	10.324	10.443	10.552
210				7.123	7.463	7.898	8.445	8.820	9.110	9.649	9.552	9.782	9.884	10.023	10.149	10.263
220					7.769	7.392	8.051	8.473	8.792	9.049	9.267	9.454	9.619	9.766	9.898	10.018
240	0.173	0.358	0.557	1.014	3.118	5.879	6.876	7.410	7.790	8.089	8.335	8.546	8.729	8.891	9.037	9.168
250	0.166	0.341	0.527	0.942	2.419	5.377	6.620	7.218	7.631	7.951	8.212	8.434	8.626	8.796	8.948	9.085
260	0.158	0.324	0.499	0.878	2.092	4.815	6.337	7.002	7.448	7.789	8.066	8.299	8.501	8.678	8.836	8.979
270	0.151	0.308	0.472	0.822	1.872	4.268	6.036	6.770	7.250	7.612	7.903	8.148	8.358	8.543	8.708	8.856
580	0.143	0.292	0.446	0.771	1.704	3.798	5.726	6.527	7.040	7.423	7.729	7.985	8.204	8.396	8.567	8.720
2 9 0	0.137	0.277	0.422	0.725	1.568	3.416	5.417	6.279	6.825	7.227	7.547	7.814	8.042	8.241	8.418	8.576
300	0.130	0.263	0.400	0.683	1.453	3.104	5.115	6.031	6.606	7.027	7.361	7.638	7.874	8.080	8.262	8.426
310	0.124	0.250	0.379	0.645	1.353	2.847	4.826	5.784	6.386	6.825	7.172	7.458	7.702	7.975	8.105	8.271
320	0.118	0.237	0.359	0.609	1.266	2.629	4.553	5.543	6.168	6.623	6.981	7.277	7.529	7.747	7.941	8.113
330	0.112	0.226	0.341	0.576	1.188	2.441	4.297	5.308	5.953	6.422	6.792	7.092	7.354	7.579	7777	7.954
340	0.106	0.215	0.324	0.546	1.119	2.278	4.058	5.081	5.742	6.224	6.603	6.915	7.180	7.410	7.613	7.794
350	0.101	0.204	0.308	0.518	1.055	2.134	3.838	4.863	5.536	6.029	6.417	6.736	7.007	7.242	7.450	7.635
360	0.097	0.194	0.293	0.492	0.998	2.006	3.634	4.655	5.337	5.829	6.234	6.560	6.836	7.076	7.287	7.476
370	0.092	0.185	0.279	0.467	0.945	1.890	3.445	4.457	5.144	5.653	6.055	6.386	6.667	6.911	7.126	7.318
380 380	0.088	0.177	0.266	0.445	0.896	1.786	3.270	4.269	4.958	5.472	5.879	6.215	6.500	6.748	6.966	7.161
390	0.084	0.168	0.253	0.424	0.851	1.691	3.109	4.090	4.779	5.296	5.708	6.048	6.337	6.588	6.809	7.007
400	0.080	0.161	0.242	0.404	0.810	1.604	2.959	3.921	4.607	5.126	5.541	5.884	6.176	6.430	6.654	6.855
410	0.077	0.154	0.231	0.385	0.771	1.524	2.819	3.760	4.442	4.962	5.379	5.724	6.019	6.276	6.502	6.705
420	0.073	0.147	0.220	0.368	0.735	1.450	2.690	3.608	4.284	4.803	5.221	5.569	5.866	6.124	5.353	6.558

Table VIII. Configurational Internal Energy (-kJ mol⁻¹) of Tetrafluoromethane at Various Pressures (P, bar) and Temperatures (T, K)

, K)	
B8 (7	
atur	
mper	
d Te	
r) an	
, ba	
es (1	
JU 88 0	
a Pr	
uriou	
at Vi	
lane	
omet	
Juor	
etral	
L Jo	
I K-1)	
"lom	
]	
tropy	
ve En	
elativ	
X. B.	
ble I	
Ē	

	P = 1100			69.73	56.11	F9 06	50.13	47.50	45.04	42.72	40.53	38.48	36.59	34.87	33.43	29.23	28.03	27.97	27.26	26.54	25.81	25.08	24.36	23.66	22.97	22.31	21.66	21.03	20.13	19.84	19.28	18.74	17.71																			
	P = 1000			59.02	55.39	59 9A	07 67	46.77	44.30	41.98	39.78	37,73	35.84	34,11	32.66	28.46	27.86	27.18	26.47	25.74	25.01	24.28	23.56	22.85	22.17	21.50	20.85	20.23	19.62	19.04	18.48	57.11	16.92		(I-)																	
	P = 900			58.28	54.65	51.48	48.65	46.00	43.55	41.20	39.00	36.94	35.04	33.31	31.85	27.63	27.02	26.45	25.63	24.89	24.15	23.42	22.70	21.99	21.30	20.63	19.98	19.36	18.76	18.18	17.62	16.67	16.07		/(.] mol ⁻¹]	- 10	60.535	56.338	1/9720	49.424	43 757	41.166	38.661	36.208	33.791	31.403	29.044	26.715	24.418 99 146	19.883	18.743	17.584
	P = 800			57.52	53.96	50.69	47.83	45.20	42.72	40.38	38.17	36.10	34.19	32.45	30.98	26.75	26.13	25.44	24.71	23.97	23.22	22.48	21.76	21.05	20.35	19.68	19.03	18.41	17.81	17.23	16.14	15.63	15.14																			
	P = 700			56.72	53.04	49.86	46.99	44.34	41.85	39.50	37.28	35.21	33.28	31.52	30.05	25.78	25.15	24.45	23.71	22.96	22.20	21.46	20.72	20.00	19.31	18.63	17.99	17.36	16.76	16.19	15.03	11.61	14.12		$E_{-}/(kJmc$		18.699	121.81	17.059	16.549	16.035	15.521	14.992	14.442	13.868	13.267	12.640	11.983	10.563	9.772	9.338	8.859
	P = 600	L		55.88	52.19	48.98	46.10	43.44	40.94	38.57	36.33	34.24	32.29	30.52	29.02	24.72	24.07	23.35	22.60	21.83	21.06	20.30	19.56	18.83	18.13	17.45	16.80	16.18	15.58	15.01	13.04	13.45	12.98	Curve																		
py	P = 500			55.00	51.28	48.05	45.16	42.47	39.95	37.56	35.30	33.18	31.21	29.41	27.89	23.53	22.86	22.11	21.34	20.55	19.76	18.98	18.22	17.48	16.77	16.09	15.44	14.81	14.22	13.65	19.61	12.12	11.67	aturation	<u>\A(kJ m</u>		10.000	19.202	18.361	10.01	17.451	16.960	16.423	15.825	15.153	14.391	13.525	11 200	10.044	8.407	7.424	6.268
lative entro	P = 400		58.55	54.08	50.33	47.07	44.14	41.13	38.88	36.46	34.17	32.02	30.01	28.17	26.61	22.17	21.45	20.67	19.85	19.03	18.21	17.40	16.62	15.87	15.14	14.46	13.80	13.18	12.59	11 204	11 03	10.56	10.13	ing the Sa	łm-3)	10		5	0_3 0_3	0-2	0-2	0-2										
Le	P = 300		57.64	53.11	49.31	46.02	43.05	40.31	37.71	35.25	32.91	30.70	28.63	26.73	25.10	20.52	19.73	18.88	18.00	17.11	16.24	15.39	14.58	13.80	13.06	12.37	11.72	11.12	10.55	10.03	9.04 9.08	9.00 8.65	8.26	thane alo	$\rho_{\rm v}/({\rm mol}~c$	200	0.1 × 1.0	1 < 7.1	8.5 X 1	1.8 X 1	3.5×1	6.2×1	0.1043	0.1665	0.2551	0.3780	0.5479	10110	1.5351	2.1768	2.6216	3.2048
	P = 200	59.33	56.68	52.08	48.22	44.88	41.86	39.06	36.41	33.87	31.45	29.16	26.99	24.98	23.25	18.37	17.43	16.43	15.41	14.39	13.41	12.49	11.63	10.83	10.11	9.45	8.85	8.31	7.82	18.1	6.59	6.24	5.93	ifluorome	dm ⁻³)	33	32	3 2	19	18	81	33	87	32	5		45	. 2	5.00	L L	14	1
	P = 100	58.38	55.67	50.98	47.05	43.64	40.55	37.66	34.91	32.26	29.71	27.25	24.88	22.62	20.55	14.78	13.23	11.59	10.08	8.85	7.87	7.08	6.43	5.89	5.43	5.04	4.69	4.38	4.10	00.0	3.43	3.25	3.08	ties of Tr	ρη/(mol	99.00	9.99	0.37	22.0	21.6	21.18	20.7(20.18	19.63	19.0	10.01	15.01	16.01	15.13	13.97	13.25	12.36
	P = 50	57.89	55.14	50.40	46.43	42.97	39.83	36.89	34.07	31.33	28.66	26.04	23.46	20.87	18.24	7.07	5.49	4.75	4.24	3.84	3.52	3.24	3.00	2.79	2.60	2.43	2.28	2.14	2.02	1 80	121	1.62	1.54	Propert) BIT	141	147	440	121	519	901	511	521	964	66]	702	000 824	36	262)26	342	693
	P = 25	57.63	54.87	50.10	46.11	42.62	39.46	36.48	33.61	30.82	28.07	25.34	22.56	19.59		2.29	2.14	2.00	1.86	1.74	1.62	1.52	1.42	1.34	1.26	1.18	1.12	1.05	00.1	56°.0	0.85	0.81	0.77	dynamic	h/d	00		00	0.1	0.2	0.5) 6.0	1.6	2.7(4.2]	5.0	197.61	17.3	23.06	30.1(34.16	38.62
	P = 15	57.53	54.76	49.98	45.98	42.48	39.30	36.31	33.42	30.60	27.82	25.02				1.27	1.20	1.13	1.07	1.01	0.95	0.89	0.84	0.79	0.74	0.70	0.66	0.63	0.59	0.53	0.51	0.48	0.46	Thermo	T/K	130	140	150	160	170	180	190	200	210	022	010	250	260	270	280	285	290
	P=1	57.48	54.70	49.92	45.91	42.41	39.23	36.22	33.33	30.49	27.68					0.82	0.78	0.74	0.70	0.66	0.62	0.59	0.55	0.52	0.49	0.47	0.44	0.42	0.39	0.36	0.34	0.32	0.31	able X.																		
	P = 5	57.43	54.65	49.86	45.84	42.34	39.15	36.14	33.23	30.38						0.40	0.38	0.36	0.34	0.32	0.31	0.29	0.27	0.26	0.24	0.23	0.22	0.21	02.0	018	0.17	0.16	0.15	H		I																
	г	8	100	110	120	130	140	150	160	170	180	61	80	210	22	200	250	260	270				310						2/0	8 8	8 8	410	420																			

Table XI.	Mechanic	al Coefficients	of Liquid
Trifluoron	nethane ur	nder Saturation	1 Conditions

T/K	$\beta \times 10^4/\text{bar}^{-1}$	$\alpha \times 10^{3}/{\rm K}^{-1}$	$\frac{\gamma}{(\text{bar K}^{-1})}$	$\gamma_{\sigma}/$ (bar K ⁻¹)	$lpha_{\sigma} imes 10^3/\mathrm{K}^{-1}$
 130	0.62	0.86	13.88	0.00	0.86
140	0.73	1.14	15.50	0.00	1.14
150	0.85	1.41	16.54	0.00	1.41
160	0.99	1.67	16. 9 0	0.01	1.67
170	1.15	1.92	16.66	0.02	1.92
180	1.36	2.17	15.97	0.03	2.16
19 0	1.61	2.41	14.98	0.06	2.40
200	1.94	2.67	13.79	0.09	2.65
210	2.36	2.86	12.50	0.13	2.93
220	2.95	3.29	11.18	0.18	3.24
230	3.76	3.70	9.86	0.24	3.61
240	4.94	4.24	8.57	0.32	4.08
250	6.77	1.97	7.33	0.41	4.69
260	9.86	6.07	6.16	0.51	5.56
270	15.74	7.92	5.03	0.64	6.92
280	29.74	11.75	3. 9 5	0.77	9.45
285	46.23	15.78	3.41	0.85	11.84
29 0	85.75	24.48	2.86	0.93	16.47

Figure 7. Test of eq 6 for CO_2 . The numbers indicate the density in mol dm⁻³. The dashed lines indicate the region for which eq 6 does not hold.

Malesinski (26) has shown that from eq 3 and the virial theorem it is possible to derive

$$\rho V - RT = \frac{n}{3} \langle U \rangle - \left(\frac{n}{3} - \frac{m}{3}\right) \langle U_{a} \rangle \tag{6}$$

with the configurational energy $\langle U \rangle$ given by

$$\langle U \rangle = \frac{N^2}{2V} \int U_{\text{off}}(r,T,V) g(r,T,V) \, d\vec{r}$$
(7)

Figures 7–9 show pV - RT vs $\langle U \rangle$ for three different substances: CO₂, C₂H₄, and CHF₃. The data for CHF₃ are those reported in this work, while those for CO₂ and C₂H₄ were taken from refs 27 and 28, respectively. It can be observed that the linear behavior predicted by eq 6 along an isochore is limited to the high-density high-temperature region for which many perturbation theories of fluids have been developed (29). Even for that region, the apparent validity of eq 6 (which implies that $\langle U_{\mathbf{q}} \rangle$ is constant along each isochore) is in contradiction with

Figure 8. Test of eq 6 for C_2H_4 . Additional details are as given in Figure 7.

Figure 9. Test of eq 6 for CHF_3 . Additional details are as given in Figure 7.

the failure of eq 4 (see Figure 6).

Fixing m = 6, the slopes of the lines shown in Figures 7-9 lead to the following values of $\langle n \rangle$: 14, 9, 10, and 21 for C₂H₄, CO₂, CHF₃, and CF₄, respectively. It should be pointed out that while *n* is almost density-independent for C₂H₄, with only a 1% scattering around $\langle n \rangle = 14$, for CO₂ and CHF₃ *n* changes up to 20% in the density ranges of Figures 7 and 9 and the varlation of *n* rises up to a maximum of 30% for CF₄. This density dependence of *n* again is an indication of the weakness of the spherical effective potential model, eq 3, even for relatively simple molecular fluids like the ones considered in this work. Even though the value $\langle n \rangle = 21$ obtained for CF₄ agrees quite well with that used in ref 3, and with the one obtained by Compostizo et al. (24), the small value obtained for CHF₃ is

1		1																				
	P = 1000	24.086	23.997	23.844	23.640	23.400	23.132	22.844	22.543	22.232	21.916	21.597	21.276	20.957	20.639	20.323	20.012	19.704	19.103	18.103	18.521	18.238
	P = 900	23.979	23.882	23.721	23.510	23.262	22.985	22.689	22.378	22.057	21.730	21.399	21.067	20.736	20.405	20.077	19.752	19.432	18.803	18.496	18.193	17.896
	P = 800	23.869	23.763	23.594	23.375	23.117	22.932	22.525	22.203	21.871	21.532	21.189	20.843	20.298	20.153	19.810	19.470	19.134	18.473	18.149	17.830	17.516
	P = 700	23.756	23.640	23.462	23.234	22.967	22.670	11.352	22.018	21.673	21.320	20.962	20.601	20.240	19.878	19.518	19.160	18.804	18.105	17.761	17.421	17.086
	P = 600	23.640	23.523	23.325	23.086	22.808	22.500	22.169	21.821	21.461	21.092	20.717	20.338	19.957	19.575	19.193	18.813	18.435	17.686	17.316	16.950	16.688
	P = 500	23.521	23.382	23.182	22.932	22.641	22.319	21.973	21.609	21.232	20.844	20.448	20.047	19.643	19.236	18.828	18.419	18.011	17.198	16.795	16.393	15.994
ŷ	P = 400	23.398	23.245	23.033	22.769	22.464	22.126	21.763	21.380	20.982	20.571	20.150	19.722	19.287	18.848	18.405	17.959	17.511	16.609	16.156	15.703	15.251
densit	P = 300	23.271	23.103	22.876	22.597	22.275	21.920	21.536	21.130	20.706	20.266	19.814	19.350	18.876	18.393	17.901	17.401	16.892	15.852	15.321	14.782	14.238
	P = 200	23.141	22.956	22.711	22.414	22.073	21.696	21.287	20.853	20.397	19.920	19.425	18.911	18.380	17.831	17.263	16.673	16.061	14.759	14.064	13.338	12.584
	P = 100	23.006	22.801	22.537	22.219	21.855	21.451	21.012	20.541	20.042	19.513	18.956	18.367	17.743	17.077	16.359	15.573	14.695	12.474	10.960	9.142	7.436
	P = 50	22.937	22.721	22.446	22.116	21.739	21.319	20.861	20.368	19.841	19.278	18.677	18.031	17.330	16.555	15.673	14.615	13.184	3.588	2.980	2.630	2.388
	P = 25	22.902	22.680	22.399	22.063	21.679	21.250	20.782	20.276	19.733	19.150	18.522	17.838	17.083	16.222	15.185			1.193	1.120	1.059	1.006
	P = 15	22.887	22.664	22.380	22.042	21.654	21.222	20.750	20.238	19.688	19.096	18.456	17.755	16.973					0.651	0.621	0.595	0.571
	P = 10	22.880	22.655	22.371	22.031	21.642	21.208	20.733	20.219	19.666	19.069	18.422	17.712						0.417	0.400	0.385	0.371
	P = 5	22.873	22.647	22.362	22.020	21.629	21.194	20.717	20.200	19.643	19.041								0.201	0.194	0.187	0.181
	F	130	140	150	160	170	18	190	200	210	220	230	240	220	200	2.70	280	8	310	320	88	9 9 0

K)	
E	1
ě	
5	
at	
- Maria	
	1
Ê	
7	
8	
Ê	
Ą	Į
Δ.	
نه	
- 5	
88	
Ľ	ļ
Ĵ	I
0	
- Tei	
Ĩ	I
2	ł
P	
3	
2	ł
ī	
ġ	
Å	
ē	Į
5	l
ğ	I
ć	I
Έ	ĺ
Ę	
_	l
7	l
Ð	ĺ
0	Í
î	l
ty.	l
ja	
Ē	I
-	Í
Ë	l
×	
þľ	
Ē	

Table XIII. Isothermal Compressibility (10⁻⁴/bar) for Trifluoromethane at Various Pressures (P, bar) and Temperatures (T, K)

	:						isoth	nermal com	pressibility						
P=5 $P=10$ $P=15$ $P=25$ $P=50$	P = 10 $P = 15$ $P = 25$ $P = 50$	P = 15 $P = 25$ $P = 50$	P = 25 $P = 50$	P = 50		P = 100	P = 200	P = 300	P = 400	P = 500	P = 600	P = 700	P = 800	P = 900	P = 1000
0.62 0.62 0.62 0.62 0.61	0.62 0.62 0.62 0.61	0.62 0.62 0.61	0.62 0.61	0.61		0.60	0.57	0.55	0.53	0.51	0.50	0.48	0.47	0.45	0.44
0.73 0.73 0.73 0.72 0.71	0.73 0.73 0.72 0.71	0.73 0.72 0.71	0.72 0.71	0.71		0.69	0.66	0.63	0.60	0.57	0.55	0.53	0.51	0.49	0.47
0.85 0.85 0.84 0.84 0.82 (0.85 0.84 0.84 0.82 (0.84 0.84 0.82 (0.84 0.82 (0.82	Ű	80	0.75	0.70	0.66	0.63	0.60	0.57	0.55	0.53	0.61
0.99 0.98 0.98 0.97 0.95 0	0.98 0.98 0.97 0.95 0	0.98 0.97 0.95 0	0.97 0.95 0	0.95 0	0	16	0.84	0.78	0.73	0.69	0.65	0.62	0.59	0.56	0.54
1.15 1.14 1.14 1.12 1.09 1.	1.14 1.14 1.12 1.09 1.	1.14 1.12 1.09 1.	1.12 1.09 1.	1.09 1.	i	3	0.95	0.88	0.81	0.76	0.71	0.67	0.64	0.61	0.58
1.35 1.34 1.33 1.31 1.27 1	1.34 1.33 1.31 1.27 1	1.33 1.31 1.27 1	1.31 1.27 1	1.27 1	-	50	1.08	0.98	0.90	0.84	0.78	0.73	0.69	0.65	0.62
1.60 1.59 1.57 1.55 1.49 1.5 1.00 1.00 1.00 1.55 1.49 1.5	1.59 1.57 1.55 1.49 1.	1.57 1.55 1.49 1.	1.55 1.49 1.3	1.49 1.5		69	1.23	1.10	1.00	0.92	0.85	0.80	0.75	0.70	0.66
1.92 1.90 1.89 1.85 1.77 1.	1.30 1.89 1.85 1.77 1.	1.89 1.85 1.77 1.	1.85 1.77 1.	1.77 1.	ri -	ଞ୍ଚ	1.40	1.24	1.12	1.02	0.93	0.87	0.81	0.76	0.71
2.30 2.32 2.29 2.24 2.12 1.	2.32 2.29 2.24 2.12 1.	2.29 2.24 2.12 1.	2.24 2.12 1.	2.12 1.	÷	8	1.62	1.41	1.25	1.12	1.03	0.94	0.88	0.82	0.77
2.34 2.89 2.85 2.77 2.58 2.2	2.289 2.85 2.77 2.58 2.2 2.2 2.2 2.17	2.85 2.77 2.58 2.2	2.77 2.58 2.2	2.58 2.2	2.2	8	1.87	1.60	1.40	1.25	1.13	1.03	0.95	0.88	0.82
3.70 3.63 3.49 3.20 2.	3.70 3.63 3.49 3.20 2.	3.63 3.49 3.20 2.	3.49 3.20 2.	3.20	N	2	2.18	1.82	1.56	1.38	1.24	1.12	1.03	0.95	0.80
4.92 4.79 4.55 4.07 3.	4.92 4.79 4.55 4.07 3.	4.79 4.55 4.07 3.	4.55 4.07 3.	4.07 3.		33	2.55	2.07	1.76	1.53	1.36	1.22	1.12	1.03	0.95
6.66 6.21 5.33 4.2	6.66 6.21 5.33 4.2	6.66 6.21 5.33 4.2	6.21 5.33 4.5	5.33 4.2	4	ຊ	3.01	2.37	1.97	1.69	1.49	1.53	1.21	1.10	1.02
9.09 7.30 5.	9.09 7.30 5.	9.09 7.30 5.	9.09 7.30 5.	7.30 5.	ດີ	5	3.57	2.72	2.21	1.88	1.63	1.45	1.30	1.19	1.09
15.20 10.73 6.	15.20 10.73 6.	15.20 10.73 6.	15.20 10.73 6.	10.73 6.	60	8 2	4.26	3.12	2.49	2.08	1.79	1.57	1.41	1.27	1.17
I.7.84 9.4	I7.84 9.4	I7.84 9.4	I7.84 9.4	17.84 9.4	6	2 :	5.13	3.60	2.79	2.30	1.96	1.71	1.52	1.37	1.24
		39.73 13.	39.73 13.	39.73 13.	13.	8	6.24	4.15	3.14	2.54	2.14	1.85	1.63	1.46	1.33
ZUIL: 10//.0 /01.8 000.4 4/5.1 34.3	10///0 /01.8 005.4 4/5.1 34.8	700.0 505.4 4/5.1 34.8	505.4 475.1 34.8	4/5.1 34.8	Ξ.	2	9.44	5.55	3.96	3.09	2.54	2.16	1.88	1.67	1.50
2002.0 1007.0 738.9 485.5 356.1 65	100/.0 738.9 485.5 356.1 65	738.9 485.5 356.1 65.	485.5 356.1 65.	356.1 65	69	35	11.76	6.43	4.44	3.40	2.76	2.33	2.02	1.78	1.59
2004.0 1001.0 728.2 470.4 307.3 117.	100/.0 //28.2 4/0.4 307.3 117.	7/28.2 4/0.4 307.3 117	4/0.4 307.3 117.	307.3 117.	117	cy -	14.73	7.44	4.98	3.74	3.00	2.51	2.15	1.89	1.69
ZUMEI.ID LUDU.U 7/19.3 458.7 279.9 152.	1000.0 719.3 458.7 279.9 152.	719.3 458.7 279.9 152.	458.7 279.9 152.1	279.9 152.1	152.]		18.45	8.61	5.57	4.11	3.25	2.69	2.30	2.01	1.78

P, har) and Temperatures (T, K)	
ressures (
Various P	
iethane at	
Frifluorom	
1) for 7	
(10 ⁻³ K ⁻	
Coefficient	
Expansion (
Thermal 1	
Table XIV.	

detrane at various Pressures (P, bar) and Temperatures (T, K)	thermal expansion coefficient	= 200 $P = 300$ $P = 400$ $P = 500$ $P = 600$ $P = 700$ $P = 800$ $P = 900$ $P = 1000$	67 0.59 0.51 0.45 0.30 0.34 0.36 0.00			-20 1.11 1.04 0.98 0.92 0.87 0.83 0.79 0.76	.43 1.34 1.26 1.19 1.13 1.07 1.03 0.98 0.95	.63 1.53 1.44 1.36 1.29 1.23 1.18 1.13 1.00	81 1.69 1.59 1.50 1.43 1.36 1.30 1.55 1.91	.98 1.84 1.72 1.62 1.53 1.46 1.40 1.34 1.90	.14 1.97 1.83 1.72 1.63 1.55 1.48 1.41 1.36	29 2.09 1.93 1.81 1.70 1.61 1.54 1.47 1.41	44 2.20 2.02 1.88 1.77 1.67 1.59 1.51 1.45	.60 2.31 2.11 1.95 1.82 1.72 1.63 1.55 1.48	76 2.42 2.19 2.01 1.87 1.75 1.66 1.58 1.51	.94 2.54 2.27 2.07 1.91 1.79 1.69 1.60 1.52	.13 2.65 2.34 2.12 1.96 1.82 1.71 1.61 1.53	.35 2.77 2.42 2.17 1.99 1.84 1.72 1.63 1.54	60 2.90 2.49 2.22 2.02 1.86 1.74 1.63 1.55	39 3.03 2.57 2.26 2.05 1.88 1.75 1.64 1.55	61 3.33 2.72 2.35 2.10 1.91 1.77 1.66 1.56	05 3.49 2.80 2.40 2.12 1.93 1.77 1.65 1.55	55 3.66 2.88 2.44 2.15 1.94 1.78 1.65 1.54	
ar) and Tei		P = 600	0.30	00.0	00.0	0.92	1.13	1.29	1.43	1.53	1.63	1.70	1.77	1.82	1.87	1.91	1.95	1.99	2.02	2.05	2.10	2.12	2.15	
ures (F, b	ent	P = 50	045	0.79	61.U	0.98	1.19	1.36	1.50	1.62	1.72	1.81	1.88	1.95	2.01	2.07	2.12	2.17	2.22	2.26	2.35	2.40	2.44	•
OUS Press	ion coeffici	P = 400	0.51	0.70		1.04	1.26	1.44	1.59	1.72	1.83	1.93	2.02	2.11	2.19	2.27	2.34	2.42	2.49	2.57	2.72	2.80	2.88	
ne at var	mal expans	P = 300	0.59	0.86		1.11	1.34	1.53	1.69	1.84	1.97	2.09	2.20	2.31	2.42	2.54	2.65	2.77	2.90	3.03	3.33	3.49	3.66	
Intometha	ther	P = 200	0.67	0.94		1.20	1.43	1.63	1.81	1.98	2.14	2.29	2.44	2.60	2.76	2.94	3.13	3.35	3.60	3.89	4.61	5.05	5.55	<<
INT TAT		P = 100	0.76	1.03	90 F	1.3U	1.54	1.76	1.97	2.17	2.36	2.56	2.78	3.02	3.30	3.63	4.04	4.58	5.31	6.36	10.78	15.44	20.39	
		P = 50	0.81	1.08	1 96	1.30	1.60	1.84	2.06	2.28	2.50	2.75	3.01	3.33	3.72	4.24	4.96	6.08	8.14	13.55	24.43	14.63	10.80	
TIGINITIAN		P = 25	0.84	1.11	1 20	00'T	1.64	1.88	2.11	2.34	2.59	2.85	3.16	3.53	4.01	4.69	5.74	7.73		000	6.69	5.94	0.36	
moremad		P = 15	0.85	1.12	1 30	60'T	1.65	1.90	2.13	2.37	2.62	2.90	3.22	3.62	4.15	4.91				10,	4.87	4.52	4.23	
		P = 10	0.85	1.13	071	₽.i	1.66	1.91	2.14	2.38	2.64	2.92	3.25	3.67	4.22					1 00	4.22	0.00 0.00	3.75	
		P = 5	0.86	0 1.13	141	1.1	0 1.67	1.91	2.16	2.40	2.66	2.95	3.29	_ ^		•	•			000	00.0	3.02	0.00	
	I	T	130	140	150	5	161	170	180	61	200	210				202		2.2			200			

Â	
Ē,	
lemperatures	
L Pr	
) al	
2	
e,	
Pressures	
5	
t Vario	•
ane a	•
rifluorometh	
2	
J.	
5	
.	
oefficient	
2	
l Pressul	
Therma	
S	
Tab	

		0 P = 900 P = 1000	5 50 A 01	10 00 01 10 11	A0'01 17'11	15.07 14.99	17.46 17.54	18.73 18.92	19.19	19.11 19.45	18.66 19.04	17.98 18.40	17.17 17.61	16.28 16.74	15.37 15.84	14.47 14.95	13.60 14.07	12.76 13.23	11.96 12.44	11.22 11.69	9.87 10.33	9.27 9.72	8.71 9.15	8.20 8.63
K)		P = 80	6.31	11 50	DO-11	12.17	17.38	18.53	18.91	18.76	18.26	17.54	16.70	15.80	14.88	13.97	13.09	12.25	11.46	10.72	9.38	8.79	8.24	7.73
tures (T,		P = 700	7 08	11 02	11.00	15.28	17.31	18.32	18.61	18.39	17.83	17.08	16.21	15.28	14.35	13.43	12.54	11.70	10.91	10.17	8.85	8.27	7.73	7.23
d Tempera		P = 600	7.89	19 22	16.40	10.40	17.24	18.11	18.29	18.00	17.39	16.58	15.68	14.73	13.77	12.84	11.95	11.10	10.31	9.58	8.27	7.69	7.16	6.67
(P, bar) an	t	P = 500	8.75	19.76	15 51	10.04	17.17	17.89	17.96	17.58	15.91	16.05	15.11	14.13	13.15	12.20	11.30	10.45	9.65	8.92	7.62	7.05	6.53	6.05
Pressures (re coefficien	P = 400	9.66	13 23	15.20	60.01	17.10	17.67	17.62	17.14	16.39	15.48	14.49	13.47	12.47	11.50	10.58	9.71	8.91	8.17	6.88	6.31	5.80	5.33
t Various]	rmal pressu	P = 300	10.62	13.73	15 27	10.01	17.04	17.44	17.25	16.67	15.84	14.86	13.81	12.75	11.70	10.70	9.75	8.87	8.06	7.31	6.00	5.43	4.92	4.46
methane a	the	P = 200	11.64	14.27	16.07	0001	16.99	17.19	16.86	16.16	15.23	14.17	13.05	11.92	10.82	9.77	8.79	7.86	7.01	6.23	4.88	4.29	3.77	3.31
Trifluoro		P = 100	12.73	14.86	16.90	10.01	10.94	16.93	16.43	15.60	14.55	13.39	12.17	10.96	9.78	8.64	7.57	6.56	5.61	4.72	3.10	2.36	1.74	1.31
ar/K) for		P = 50	13.29	15.18	16.41	16.00	76.01	16.80	16.21	15.29	14.18	12.95	11.68	10.40	9.16	7.96	6.79	5.67	4.56	3.41	0.51	0.41	0.35	0.31
ficient (b		P = 25	13.58	15.34	16.48	16.01	16.01	16.73	16.09	15.14	13.98	12.72	11.41	10.10	8.81	7.55	6.32	5.09			0.13	0.12	0.11	0.11
sure Coef		P = 15	13.70	15.40	16.50	16.01	16.01	16.70	16.04	15.07	13.90	12.62	11.30	9.97	8.66	7.38				000	90.0	90.0	90.0	90.0
rmal Press		P = 10	13.76	15.43	16.52	16.90	00.01	60.01	16.02	15.04	13.86	12.58	11.24 2 2	9.91	8.58					100	0.04		0.04	0.03
CV. The		P = 5	13.82	15.47	16.53	16.90	00.01	10.00	10.00	15.01	13.82	15.23	11.19							000	20.0	20.0	0.02	0.02
Table 2		F	130	4	150	9	3 5	29		8	200	210	077 77	1 22			007	012	88		010	020	22	140

0	
T, K	
180	
atu	Ì
ledu	
i Te	
ľ.	
Ja	
ď,	
Harne	
Less	a no
[snc	- La
Varid	lint
at	- interest
hane	CT LD
omet	line.
luor	
Trif	
, of	
nol ⁻¹	
- k .	
-) 28	
Ener	
lag	
Inter	
ratio	
Ingu	
Sen	
VI.	
ble X	
Tel	l

8	31	7	9	22	61	83	2	ž	ğ	6	73	6	7	ន	82	8	8	8	14	27	0
P = 1	18.36	18.46	18.10	17.77	17.44	17.12	16.90	16.46	16.15	15.74	15.3	14.96	14.60	14.25	13.8	13.52	13.20	13.16	13.11	13.02	12.91
P = 900	18.866	18.452	18.078	17.728	17.392	17.058	16.720	16.372	16.011	15.637	12.252	14.859	13.465	14.076	13.704	13.366	13.117	12.983	12.925	12.833	12.710
P = 800	18.868	18.437	18.046	17.681	17.330	16.983	16.632	16.272	15.900	15.515	15.120	14.717	14.313	13.916	13.534	13.188	12.930	12.781	12.715	12.615	12.484
P = 700	18.865	18.417	18.009	17.628	17.262	16.901	16.537	16.164	15.779	15.383	14.976	14.562	14.147	13.738	13.346	12.990	12.722	12.552	12.476	12.367	12.226
P = 600	18.859	18.393	17.968	17.570	17.188	16.812	16.433	16.046	15.648	15.237	14.817	14.390	13.963	13.541	13.136	12.766	12.486	12.290	12.201	12.079	11.925
P = 500	18.847	18.364	17.921	17.506	17.107	16.714	16.319	15.917	15.503	15.077	14.642	14.199	13.756	13.318	12.897	12.511	12.214	11.983	11.877	11.736	11.564
P = 400	18.831	18.330	17.868	17.434	17.017	16.607	16.194	15.744	15.342	14.899	14.445	13.985	13.520	13.062	12.620	12.212	11.892	11.612	11.480	11.312	11.112
P = 300	18.808	18.289	17.808	17.355	16.918	16.488	16.056	15.615	15.162	14.697	14.220	13.735	13.246	12.761	12.290	11.850	11.496	11.140	10.964	10.750	10.500
P = 200	18.779	18.242	17.740	17.265	16.807	16.355	15.900	15.435	14.957	14.465	13.958	13.441	12.916	12.391	11.875	11.384	10.971	10.471	10.205	9.888	9.520
P = 100	18.743	18.186	17.663	17.165	16.683	16.205	15.723	15.229	14.719	14.190	13.642	13.077	12.496	11.902	11.300	10.700	10.143	9.151	8.444	7.506	6.515
P = 50	18.721	18.155	17.620	17.110	16.614	16.123	15.625	15.113	14.583	14.031	13.455	12.854	12.227	11.571	10.879	10.134	9.290	3.791	3.233	2.879	2.617
P = 25	18.710	18.138	17.597	17.081	16.578	16.079	15.573	15.052	14.510	13.944	13.350	12.727	12.068	11.365	10.589			1.435	1.337	1.251	1.175
P = 15	18.705	18.131	17.588	17.069	16.564	16.061	15.551	15.026	14.480	13.907	13.306	12.672	11.999					0.806	0.760	0.718	0.680
P = 10	18.703	18.128	17.583	17.063	16.556	16.052	15.541	15.013	14.464	13.889	13.284	12.644						0.522	0.494	0.469	0.446
P = 5	18.701	18.124	17.579	17.057	16.549	16.043	15.530	15.000	14.449	13.870								0.254	0.242	0.230	0.219
г	130	140	150	160	170	180	190	200 200	210	220	83 23	240	250	260	270	580	290	310	320	330	340

Table XVII. Relative Entropy (-J mol⁻¹ K⁻¹) for Trifluoromethane at Various Pressures (P, bar) and Temperatures (T, K)

	8	5	6	2	ç	4	5	ø	7	5	0	ş	4	ç	ð	I	9	5	E	2	ŝ	ç
	P = 1	62.1	59.1	56.5	54.2	52.0	50.0	48.0	46.1	44.2	42.4	40.5	38.7	37.0	35.3	33.8	32.4	31.4	30.8	30.5	30.1	29.6
	P = 900	62.09	58.94	56.24	53.84	51.64	49.57	47.57	45.62	43.69	41.79	39.92	38.10	36.34	34.67	33.13	31.77	30.77	30.10	29.80	29.41	28.93
	P = 800	62.02	58.75	55. 94	53.46	51.19	49.07	47.02	45.03	43.07	41.15	39.26	37.41	35.64	33.96	32.40	31.03	30.02	29.34	29.03	28.63	28.14
	P = 700	61.92	58.53	55.63	53.06	50.72	48.54	46.45	44.42	42.43	40.47	38.55	36.69	34.89	33.19	31.62	30.23	29.21	28.50	28.18	27.77	27.28
	P = 600	61.81	58.30	55.29	51.64	50.23	47.99	45.85	43.77	41.74	39.75	37.80	35.91	34.09	32.37	30.77	29.36	28.32	27.58	27.24	26.81	26.30
	P = 500	61.67	58.05	54.93	52.19	49.71	47.40	45.21	43.08	41.01	39.98	37.00	35.07	33.22	31.47	29.84	28.41	27.33	26.54	26.17	25.72	25.18
tropy	P = 400	61.51	57.77	54.55	51.71	49.15	46.78	44.52	42.35	40.22	38.15	36.12	34.15	32.26	30.47	28.80	27.33	26.21	25.33	24.93	24.43	23.85
relative en	P = 300	61.32	57.57	54.14	51.21	48.56	46.11	43.79	41.55	39.37	37.24	35.16	33.13	31.19	29.34	27.61	26.07	24.89	23.87	23.39	22.81	22.14
	P = 200	61.10	57.13	53.69	50.66	47.93	45.40	43.00	40.69	38.43	36.23	43.07	31.97	29.95	28.01	26.19	24.54	23.25	21.94	21.29	20.51	19.63
	P = 100	60.84	56.76	53.20	50.07	47.24	44.61	42.13	39.73	37.38	35.08	32.82	30.61	28.44	26.35	24.34	22.45	30.84	18.53	17.01	15.08	13.08
	P = 50	60.69	56.55	52.94	49.75	46.87	44.19	41.66	39.20	36.80	34.44	32.10	29.80	27.52	25.28	23.06	20.85	18.62	7.77	6.64	5.90	5.34
	P = 25	60.61	56.45	52.81	49.59	46.68	43.98	41.41	38.93	36.49	34.09	31.71	29.35	27.00	24.64	22.22			3.00	2.78	2.59	2.42
	P = 15	60.58	56.40	52.75	49.52	46.60	43.89	41.31	38.81	36.37	33.95	31.55	29.16	26.77					1.69	1.59	1.49	1.40
	P = 10	60.57	56.38	52.73	49.49	46.56	43.80	41.26	38.76	36.30	33.88	31.47	29.06						1.10	1.03	0.98	0.92
	P = 5	60.55	56.36	52.70	49.46	46.52	43.80	41.20	38.70	36.24	33.80								0.54	0.51	0.48	0.45
	г	130	140	150	160	170	180	190	80	210	220	230	240	250	260 2	270	280	290	310	320	330	340

somewhat surprising, and it is perhaps related to the simultaneous existence of anisotropy of shape and multipolar interactions.

Registry No. CF4, 75-73-0; CF3H, 75-46-7.

Literature Cited

- Powles, J. C.; Evans, W. A.; McGrath, E.; Gubbins, K. E.; Murad, S. *Mol. Phys.* **1979**, *38*, 893.
 Calado, J. C. G.; Clancy, P.; Heintz, A.; Streett, W. B. *J. Chem. Eng.*
- (3) Rubio, R. G.; Claado, J. C. G.; Clancy, P.; Streett, W. B. J. Phys. Chem. 1985, 89, 4837.
- (4) Paas, R.; Schneider, G. M. J. Chem. Thermodyn. 1979, 11, 267. Wirths, M.; Schneider, G. M. Fluid Phase Equilib. 1985, 21, 257.
- (6) Rubio, R. G.; Zollweg, J. A.; Streett, W. B. Ber. Bunsen-Ges. Phys.
- Chem. 1989, 93, 791. (7) Stewart, R. B.; Jacobson, R. T.; Becker, J. H.; Zimmerman, M. J. A Survey of the Thermodynamic Property Data for the Halocarbon Refrigerants. Technical Report No. 81'2; Center for Applied Thermody-
- namics: University of Idaho: Moscow, ID, 1981.
 (8) Strobridge, T. R. Technical Note No. 129A; National Bureau of Standards: Gaithersburg, MD, 1963.
 (9) Lobo, L. Q.; Staveley, L. A. K. J. Chem. Eng. Data 1981, 26, 404.
- (10) Terry, M. J.; Lynch, J. T.; Bunclark, M.; Mansell, K. R.; Staveley, L. A. K. J. Chem. Thermodyn. 1989, 1, 413. McCormack, K. E.; Schneider, W. G. J. Chem. Phys. 1951, 19, 849.
- (12) Kratzke, H.; Niepmann, R.; Spillner, E.; Kohler, E. Fluid Phase Equilib. 1984, 16, 287.
- (13) Smith, J. H.; Pace, E. L. J. Phys. Chem. 1969, 73, 4232.
 (14) Bagloi, Y. P.; Butko, A. E.; Mikhallenko, S. A.; Yukaba, V. V. Russ. J. Phys. Chem. (Engl. Transl.) 1988, 42, 564.
- (15) Valentine, R. H.; Brodale, G. E.; Glauque, W. F. J. Am. Chem. Soc. 1962, 66, 392.
- (16) Hori, K.; Okazaki, S.; Uematsu, M.; Watanabe, K. In Proceedings of the 8th Symposium on Thermophysical Properties, Gaithersburg, MD,

1981; Sengers, J. V., Ed.; American Society of Mechanical Engineers: New York, 1982. (17) Hou, Y. C.; Martin, J. J. AIChE J. 1959, 5, 125.

- (18) Goodwin, R. D. The Thermophysical Properties of Methane from 90 to 500 K at Pressures to 700 Bar; Technical Note No. 653; National Bueau of Standards: Washington, D.C., 1974.
- (19) Kondo, H.; Watanabe, K.; Tanishita, I. Bull. JSME 1974, 17, 776; 1974, 17, 783.
- (20) Dymond, J. H.; Smith, E. B. The Virial Coefficients of Pure Gases and Mixtures; Clarendon Press: Oxford, U.K., 1980
- (21) Bohm, H. J.; Ahlrichs, R.; Scharf, P.; Schffler, H. J. Chem. Phys.
- (21) Bohill, H. S., Himbils, H., Cellah, H., Echand, H., Schmidt, S., State, S.
- (25) Grindley, T.; Lind, J. E. J. Chem. Phys. 1978, 68, 5046.
 (26) Malesinski, W. In Proceedings of the 1st International Conference of Calorimetry and Thermodynamics; Malesinski, W., Ed.; Polish Science Publisher: Warsaw, 1969.
- (27) Angus, S.; Armstrong, B.; de Reuck, K. N. Carbon Dloxide. Interna-tional Thermodynamic Tables of the Fluid State; Pergamon Press. Oxford, U.K., 1976.
- (28) Angus, S.; Armstrong, B.; de Reuck, K. M. Ethylene. International Thermodynamic Tables of the Fluid State; Pergamon Press: Oxford, U.K., 1974.
- (29) Gray, C. G.; Gubbins, K. E. Theory of molecular fluids; Clarendon Press: Oxford, U.K., 1984.
- (30) Douslin, D. R.; Harrison, R. H.; Moore, R. T.; McCullough, J. P. J. Chem. Phys. **1961**, *35*, 1357.
 (31) Lange, H. R.; Stein, F. P. J. Chem. Eng. Data **1970**, *15*, 56.
 (32) Martin, J. J.; Bhada, R. K. AIChE J. **1971**, *17*, 683.
 (33) Belzile, J. L.; Kallaguine, S.; Ramaiho, R. S. Can. J. Chem. Eng. **1975**, *150*, 1407

- 1976, 54, 450.

Received for review April 20, 1990. Accepted November 14, 1990. This ork was supported in part by Universidad Complutense under a grant for Grupos Precompetitivos and by CICYT under Grant CB86-0159.

Isobaric Vapor-Liquid Equilibrium Data for the Binary Systems **1,2-Dimethoxyethane + Alcohols**

José Luis Cabezas and Sagrario Beltrán

Department of Chemical Engineering, University College, 09002 Burgos, Spain

José Coca*

Department of Chemical Engineering, University of Oviedo, 33071 Oviedo, Spain

Vapor-liquid equilibrium data are reported at 101.32 kPa for the binary systems formed by 1,2-dimethoxyethane with the following alcohols: methanol, ethanol, 1-propanol, and 1-butanoi. An azeotrope was observed for the systems ethanol + 1,2-dimethoxyethane and 1,2-dimethoxyethane + 1-propanol. Experimental data. activity coefficients, fugacity coefficients, and correlation parameters for the Margules, Van Laar, Wilson, NRTL, and UNIQUAC equations are reported.

Introduction

Experimental data of vapor-liquid equilibrium (VLE) are useful for designing some types of separation processes. When experimental data are not available, estimations are made, based mainly on group contribution models (1). Hank et al. (2) proposed a method for predicting VLE data from excess molar enthalpies H^E at different temperatures.

In this paper we report VLE data for 1,2-dimethoxyethane (2,5-dioxahexane) + 1-aikanol (methanol through butanol) systems. Excess molar enthalpy data at 298.15 K are available for all these systems (3), but no VLE measurements have been published. The data reported here will be used as part of a program to determine the applicability of liquid models for the calculation of activity coefficients (4).

Experimental Section

Apparatus and Procedure. Vapor-liquid equilibrium measurements were carried out in an all-glass equilibrium still of the Gillespie type (5) as modified by Röck and Sieg (6). It is a commercial unit manufactured by Fritz GmbH (Normag, Hofheim, Germany), and its features have been described previously (7). The apparatus allows good mixing of the vapor and liquid phases and good separation of the phases once they reach equilibrium, and it prevents entrainment of liquid drops and partial condensation in the vapor phase.

The boiling point temperature T in the equilibrium still was measured with a mercury-in-glass thermometer (0.1 K divisions),

^{*} To whom correspondence should be addressed.